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Abstract-In a companion paper, a continuum model for simulating transport phenomena occurring 
during solidification of a binary metal alloy is extended to allow for treatment of effects such as solutal 
undercooling and solid transport in the form of floating and settling crystals. However, inclusion of such 
features requires auxiliary models which, in large part, depend on microscopic considerations. Such models 
are developed in this study and specifically deal with relations for solid and liquid velocities under conditions 
involving solid motion, as well as determination of solutal undercooling as a function of the solidification 
rate and stereological characteristics of the solid/liquid interface. The models also permit determination of 

final grain density and size. 

II. INTRODUCTION 

In a companion paper [ 11, models for simulating trans- 
port phenomena occurring during solidification of a 
binary alloy are reviewed, with emphasis placed on 
existing continuum and two-phase approaches, Link- 
ages between the two approaches are discussed, and 
volume-averaging procedures inherent in the two- 
phase model are used to develop an extension to the 
continuum model which retains its computational 
convenience, while allowing it to treat effects such 
as solid movement and solutal undercooling. In this 
study, auxiliary :models are developed to facilitate 
inclusion of such effects. 

During solidification, crystal fragments may frac- 
ture from dendrite arms and be advected into a rela- 
tively high temperature region in which they may melt 
to form small nuclei. In turn, the movement of equi- 
axed crystals may be characterized by settling or float- 
ing within the melt, with some crystals experiencing 
packing and/or attachment to the front formed by 
stationary columnar dendrites. Moreover, packing or 
attachment to the front of columnar dendritic tips 
may initiate a tra.nsition from columnar to equiaxed 
structures (CET). Such features (illustrated in Fig. 1 
of ref. [l]) should be considered in modeling solid 
movement. 

One approach to accounting for solid movement in 
a dispersed flow is to impose a relationship between 
the solid and liquid velocities, as, for example, through 
the ‘consolidation factor’ Fintroduced by Flood et al. 
[Z]. A linear relation is proposed : 

t Author to whola correspondence should be addressed. 

where 

V, = FV, (1) 

F= 1-F: forg,<g,* 
( > 

and 

F=O forg, ag$ (2) 

and g,* is a prescribed value of the solid volume frac- 
tion corresponding to V, = 0. In a more recent study, 
Flood et al. [3] implemented this concept in a numeri- 
cal simulation to investigate the effect of solid move- 
ment on macrosegregation. However, except for 
extremes at 9% = 0 and gs = g:, the concept of a linear 
consolidation factor lacks a physical basis. For 
stationary columnar structures, g: can be taken as 
zero. For equiaxed solidification, g: may be inter- 
preted as a maximum solid packing fraction, above 
which grains merge and solid motion is terminated. 
However, before the solid crystals reach a packing 
state for which V, = 0, they can be floating or settling 
in the melt, and the concept of a consolidation factor 
is unable to account for such motion. 

In the mixture continuum model [l], an extra 
relationship is needed to account for the movement 
of dispersed solid crystals in the melt and should be 
consistent with the solid and liquid momentum equa- 
tions. Since solid movement depends on the gravi- 
tational field, and possibly other forces characterized 
by different directional components, the solid trans- 
port model should allow for consideration of motion 
in different directions. In the vertical direction, the 
buoyancy force may be important and sedimentation 
and floating should be considered, while in the hori- 
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NOMENCLATURE 

a constant in equations (21) and (22) ; V velocity 
exponent in equation (27) ; constant in V0 control volume 
equation (34) W, local growth velocity at the interface of 

A area an equivalent envelope of solid structure 
b constant in equations (21) and (22) ; W mean growth rate of interface 

exponent in equation (34) X integral variable 

: 
exponent in equation (34) Y y-coordinate of a Cartesian system. 

$ 
characteristic diameter of solid crystals 
mass diffusion tensor of a species in the 
multi-component mixture Greek symbols 

f” species concentration of a binary 6 local thickness of solutal boundary layer 

mixture (defined in terms of species mass in front of solid/liquid interface 

fraction) r phase change rate per unit volume 

Af” difference between interfacial and KP segregation coefficient 

volumetric species concentrations 1, primary dendrite arm spacing 

f mass fraction of solid or liquid phase P dynamic viscosity 

F consolidation factor P average mass density. 

g,g volume fraction of solid or liquid phase ; 
gravitational acceleration 

I diffusion length 
Subscripts 

1 
M interfacial momentum transfer rate per 

previous time step 
2 nucleation terminated 

unit volume con contacting 
n number of crystals per unit volume or interface 

per unit area t 
nucleation rate 

liquid phase 
ri Id liquidus line 
P pressure m mixture 
Pe macroscopic solutal Peclet number 
d 

max maximum 
local growth rate of interface nu nucleation 

Re multiphase Reynolds number S 

4 final grain radius 
solid phase 

SC Schmidt number 
sP solid packing. 

S” interfacial area concentration 
t time Superscripts 
T equilibrium temperature A per unit area 
AT nucleation undercooling of the liquid C columnar 

melt d dissipative 
AT, standard deviation of nucleation e equiaxed 

undercooling J species transfer 
AT,, mean nucleation undercooling 0 previous time 
u x-velocity component in a Cartesian u CI species component of a binary alloy 

system f j? species component of a binary alloy 
V y-velocity component in a Cartesian effective or macroscopic; prescribed 

system value. 

zontal direction solid movement due to phase change 
and viscous drag may be dominant. In this study, solid 
transport equations which account for the sedi- 
mentation or floating of dispersed crystals in the ver- 
tical direction, as well as movement due to phase 
change and viscous effects, are developed. 

Although nonequilibrium effects due to solutal 
undercooling are important and are considered in 
microscopic models of solidification, they have been 
neglected in many of the macroscopic models. Increas- 

ingly, however, it is recognized that solutal under- 
cooling effects should be considered. A micro-macro- 
scopic model for equiaxed solidification [4] accounts 
for solutal undercooling through the kinetic law used 
to calculate solid volume fraction in the latent heat 
release source term. However, none of the present 
micro-macroscopic models include convection effects 
in the liquid. In the two-phase model developed by 
Ni and Beckennann [5], the liquid concentration is 
treated as a dependent variable and the interfacial 
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liquid concentration is calculated by using the equi- 
librium interfacial temperature with relations based 
on the phase diagram. Use of the model by Ni and 
Beckermann [6] indicates that solutal undercooling 
has a strong effect on equiaxed solidification, 
especially at the so’lidification front. 

Solutal undercooling, defined as the difference 
between the interfacial and volume-averaged liquid 
species concentrations, Afi = fpi -fl, is strongly 
influenced by species diffusion in the liquid at the 
interface. Hence, it may depend on the liquid species 
diffusivity, the mean crystal and dendrite growth rate, 
the mean thickness of the solutal boundary layer, the 
solid volume fraction, and the interfacial area con- 
centration representing the interfacial geometry. 
However, transport in the liquid and the solutal 
boundary layer is strongly influenced by convection, 
which acts to thin the solutal boundary layer at the 
interface. On the microscopic scale, the effect of solute 
build-up or local s.olutal undercooling may be treated 
through an effective partition (segregation) coefficient 
up*, which has been used in metallurgical analyses of 
microsegregation [7]. Recently Tewari and Shah [8] 
and Tewari et al. [9] utilized the effective partition 
coefficient model, originally developed by Burton et 
al. [lo], to account for solutal undercooling at the 
dendrite tip region (or growth front) in their study 
of macrosegregation, and predicted results were in 
reasonable agreement with experimental data. 

The equilibrium partition coefficient relates the 
interfacial species concentrations of the liquid and 
solid phases as 

K =G 
p fpi 

(3) 

and the effective Ipartition coefficient is defined as [7, 
111 

.*=G 
p fF’ 

Thus, the liquid solutal undercooling can be expressed 
as 

Relationships between the effective partition 
coefficient, liquid species concentration, and the inter- 
facial species concentrations of the solid and liquid 
phases are illustrated schematically in Fig. 1. From 
the work of Burton et al. [lo], Flemings [7] provides 
the following expression for the effective partition 
coefficient 

KP 

kPI=Xp+(l-rcp)exp(-da/D,) (6) 

where d is the local crystal growth rate and 6 is the 
thickness of the solutal boundary layer on a micro- 
scopic scale. The exponential term accounts for solutal 
undercooling, where the parameter d S/D, may be 
interpreted as a local solutal Peclet number. On a 

x ( growth direction) 
*IX f? - KPfl 

Fig. 1. Schematic illustration of ef+ctive partition coefficient 
I$, liquid species diffusion length 4, and liquid solutal under- 

cooling ASp. 

macroscopic scale, 3 6/D, may be equated to 
T,l{/p,D,S,, which may be interpreted as a macro- 
scopic solutal Peclet number Pe. The liquid species 
diffusion length I{ characterizes mean species diffusion 
in the liquid adjoining the solid/liquid interface within 
a control volume. The physical basis of this macro- 
scopic quantity was provided in the two-phase model 
of Ni et af. [12]. The interfacial area concentration, 
S,, is defined as the ratio of the solid/liquid interface 
area to the control volume, Ai/Vo, and characterizes 
first-order geometric effects on the interfacial species 
transfer. In general, S, is a function of the solid volume 
fraction and interface geometry. 

In this study equations (5) and (6) are used as a 
starting point for determining solutal undercooling. 
The subsequent analysis requires determination of 
characteristic lengths for the solid structures (equi- 
axed crystals or columnar dendrites), as well as models 
for crystal nucleation and fragmentation. 

2. MODEL EQUATIONS 

2.1. Solid transport 
A relation for relative motion between the liquid 

and solid phases may be developed from their respec- 
tive momentum equations, which appear as equations 
(6) and (21) in the companion paper [l]. The final 
form depends on the coordinate direction. 

2.1.1. Solid transport due to floating and sedi- 
mentation in vertical direction. Writing the interfacial 
momentum balance as Mf = - Mf - VJ, - V,iT, and 
expressing the liquid momentum transfer term, M;‘, 
in terms of a drag coefficient, the liquid and solid 
momentum equations, equations (6) and (21) of ref. 
[ 11, can be expressed as follows for the vertical direc- 
tion : 

8P, 3 
= -91 a, + 4d2 (Wgsm (v, -v,> 

_ v_@~~P.w% 

( 
I 2 bhP,g+v 

PsP& + > 

* {zmvg,vl) +v,i Vd} (7) 
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and 

; (SSPJJS) + v - (S.PsV,Vs) 

ah 3 
= -ss ay - &y Gmw4n GJ, - 4) 

s 

+ 
( 

v - (p,-psJrs 2% s 
PsPJv2 aY > 

l-s_gspsg+V 

’ {PZ[v(gsvs)-u~i VSsl}. (8) 
However, assuming the macroscopic viscous terms 
to be negligible for the solid and liquid phases of a 
suspension or a particulate two-phase flow [13], and 
neglecting inertia effects and interfacial momentum 
transfer due to phase change relative to interfacial 
momentum transfer and buoyancy forces, the momen- 
tum equations reduce to 

0 = -h $ + 2 (24)LMn (0, -s) -gIplg (9) 
s 

and 

0 = -a$ - ~(24)wm (%-~I)--gsPsg. (10) 
s 

Equation (10) can be rewritten as 

aPS -= - -$ (24)~~ (0, -0,) -Ppsg. 
ay : 

(11) 

Since the solid particles or crystals are not in contact 
with each other, pressure equilibrium allows for sub- 
stitution of equation (11) into equation (9), yielding 

o= -9, 
[ 

- &(24)~~(r~)-~,g s 1 
+ -$ (24)w4n (us -Ul> -9lPl8. (12) 

s 

Hence, with g,+gs = 1, the following relationship 
between the vertical components of the solid and 
liquid velocities is obtained : 

(13) 

where positive v corresponds to motion in the upward 
direction. This result is similar to the model proposed 
by Weinberg [14], which has been verified exper- 
imentally. Substituting for the mixture viscosity from 
equation (17) of ref. [ 11, it follows that : 

-(PI - PS) d,2g. 1 Qscl, (14) 

The foregoing relation accounts for settling by 
allowing the relative velocity in the vertical direction 
to be influenced by the buoyancy force and relates 
settling to the difference between the solid and liquid 
densities. If ps > p,, settling occurs ; otherwise the solid 

crystals or fragments are floating or ascending. Since 
density differences between the solid and liquid phases 
vary with temperature and species concentration, mic- 
rosegregation will affect the macrosegregation pat- 
terns through liquid convection and solid movement 
for the entire solidification system [ll]. Also, if the 
liquid viscosity is large, viscous effects may dominate, 
rendering solid and liquid velocities virtually identical. 
If d, is small, the difference between the solid and 
liquid velocities is small. 

The above equation is only valid before the solid 
reaches the packing state, at which the pressure equi- 
librium assumption is no longer valid. When gs > gsP, 
the equiaxed crystals are stationary and the solid vel- 
ocity is zero. 

2. I .2. Solid transport in horizontal direction. In the 
absence of buoyancy forces (or other externally 
imposed forces), the liquid and solid momentum equa- 
tions, equations (6) and (21) of ref. [I], for the hori- 
zontal direction can be expressed as 

* bmYg,Y)+ul~ Wsl) (13 
and 

~(Y,P,Y)+v.(B.P.v.u.) 

ap, 3 
= -&ax - hd2 (24)9&n (K-U,) s 

+ 
( 
u _ ~pl-psu-s ag, s 

PsP,S,z ax > 
r,+v 

* ~~c:tv(g,~~)--u,,vg,l}. (16) 
If the pressure gradient in the x-direction is small 
relative to interfacial momentum transfer between the 
liquid and solid phases and inertia effects and viscous 
stresses are neglected, equation (16) yields the fol- 
lowing linear relation between the solid and liquid 
velocities : 

18 

( > 
(P, - ps> r, ag, 

ZgSpm u,- p,p,s,2 $9 
24, = 

18 (17) 
Z gsprn - r, 

where the second term in the numerator is very small 
relative to the first term. This equation shows the effect 
of phase change on solid movement in the horizontal 
direction. If solidification is occurring (r, > 0), the 
average solid velocity exceeds the average liquid 
velocity. During remelting, r, i 0 and u, < u,. In prac- 
tice, however, except for rapid solidification orremelt- 
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ing, the interfacial momentum transfer due to phase 
change is much smaller than the interfacial momen- 
tum transfer due t.o drag forces at the solid-liquid 
interface. Hence, the horizontal solid and liquid vel- 
ocity components are virtually identical. 

If the inertia terms are very large relative to terms 
associated with the viscous stress and interfacial 
momentum transfer due to phase change, the third 
and fourth terms o’n the right-hand side of equations 
(15) and (16) may be neglected. Substituting from 
equations (1) and (2), respectively, of ref. [l], and 
neglecting interfacial mass exchange due to phase 
change, equations (15) and (16) reduce to 

and 

du, ap, 18 
PST = - -& - ~~&-uI). (18) 

Eliminating the pressure gradient terms by assuming 
pressure equilibrium, it follows that 

(us--u,). (19) 

For constant but different phase densities, integration 
of equation (19) yields 

psu, - PIUS = (w, - pruJ” exp 

(l-~~2’sg’pdr} (20) 

where the superscript 0 stands for the previous time 
step. For small crystals, a large liquid viscosity, or 
packed solid crystals, this expression reduces to 
U, = (p,/pJu,. Hence, for equivalent phase densities, 
u, = u,. If p, # pli, but inertia effects are also large 
relative to interfacial momentum transfer, the right- 
hand side of equa.tion (19) is negligible and the differ- 
ence between the solid and liquid velocities is equi- 
valent to conditiclns at the previous time step. That is, 
P& -WI = (W, - P,u3°. 

The foregoing zesults suggest that it is often reason- 
able to assume equivalent solid and liquid velocity 
components in the horizontal direction. The same may 
be said for any direction which is without buoyancy 
or externally applied forces. 

For a general linear relation of the form, 

v, = aV,+b (21) 

and the definition of the mixture velocity, 
V, =J;V,+fsVs, the following expressions may be 
used to relate the solid and liquid velocities to the 
mixture velocity 

v =aV,+bf 
s f;+afs and V, = 9. (22) 

I as 

2.2. Solutal undercooling 
Substituting equation (6) into equation (5), with 

the macroscopic solutal Peclet number, Pe = 
r&psDISv, equated to l? S/D,, it follows that 

Afl =fZi 6-l [l-exp(-I,l{/p,D,S,)]. (23) 
( ) 

For large values of D, and S, and/or small values of 
1; and Is, lY,l~/p,D,S, -K 1 and the difference between 
the volume-averaged liquid concentration and the 
interfacial liquid concentration is small (Afy z 0). 
Hence, the effect of solutal undercooling is small, and 
the effective partition coefficient is close to the equi- 
librium partition coefficient (K,* = K*). Such con- 
ditions exist in the interdendritic region, where the 
interfacial area concentration is large and the species 
diffusion length (which must be less than the charac- 
teristic length in that region) is small. Hence, liquid in 
this region can be assumed to be solutally well mixed. 
In the other extreme (T,Zj/p,D,S, >> l), phase change 
occurs rapidly, the solutal boundary layer is thick, 
and/or liquid species diffusion is slow. Solutal under- 
cooling then depends on the value of the equilibrium 
partition coefficient, Affp =f$(l/~~-- l), and the 
effective partition coefficient approaches unity. 

In general (kp < rc: < l), the local concentration 
field depends on the macroscopic solutal Peclet 
number, T,lj/p,D,S,. In the dendritic tip region, solu- 
tal undercooling at the solidification front should be 
considered in predicting macrosegregation and ther- 
mosolutal convection, and its effect on mac- 
rosegregation has recently been considered for direc- 
tional solidification in PbSn alloys [8, 91. 

Alternatively, based on an interfacial species bal- 
ance [5] with negligible solid diffusion, the difference 
between the volume average and interfacial species 
concentrations of the liquid phase can be expressed as 

Af: = fZ1. (24) 

Taking a Taylor series expansion of the exponential 
function in equation (23) and comparing with equa- 
tion (24), the difference between the two solutal under- 
cooling models is 

(25) 

Hence, for very small values of Pe, equations (23) and 
(24) are virtually equivalent. 

Since solidification regions may be characterized by 
sharply different features, solutal undercooling may 
vary from one region to another, requiring some form 
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of model differentiation. For this purpose, four 
different regions are identified. They include a region 
with suspended or impinging equiaxed crystals, a den- 
drite tip region (growth front), a region of stationary 
packed equiaxed and columnar dendritic structures 
(interdendritic region), and a eutectic reaction region. 
These regions are illustrated schematically in Fig. 2 
and may be characterized by different diffusion 
lengths. 

2.2.1. Liquid species diffusion length. The liquid 
species diffusion length and interfacial area con- 
centration strongly influence the macroscopic solutal 
Peclet number, Pe = T,l//p,D,S,, with which solutal 
undercooling can be computed from equation (23) or 
(24). Models for the liquid species diffusion length for 
a dispersed flow and stationary dendrites are discussed 
in this section, and the interfacial area concentration 
is treated in the next section. 

For a dispersed flow with equiaxed crystals sus- 
pended in the melt [Fig. 2(a)], equiaxed growth would 
be impossible without undercooling of the liquid, and 
the phenomenon of recalescence commonly observed 
in castings is directly related to solutal undercooling 
[4]. By considering species diffusion for quasi-station- 
ary conditions (dfP/dt = 0) and an equivalent spheri- 
cal crystal, the following expression has been obtained 
for the liquid species diffusion length [ 15, 161: 

xlJ,Xx’exp [(y)“:] dxl (26) 

where R, is the final characteristic radius of an equi- 
valent equiaxed crystal and w, is the growth velocity 
of the characteristic envelope of the crystal, which is 
the growth velocity of the dendrite tips. Rappaz and 
Thevoz [17] represented the species diffusion length 
as DJw,, which is a limiting case of the above result. 
For the limiting case, the solutal Peclet number is 
independent of the liquid diffusivity, which is incor- 
rect. The growth velocity w, may be obtained by using 
an interface growth kinetics model, thereby allowing 
the kinetics of crystal growth to be incorporated into 
a macroscopic solidification model. Alternatively, it 
may be equated to the absolute value of the mean 
growth rate of the liquid phase, W,, if the growth rate 
of the dendrite front is assumed to equal the mean 
growth rate of the solid phase in the control volume. 
However, since equation (26) is derived for quasi- 
stationary conditions (dfl/dt = 0), it does not account 
for the effects of convective flow and solid movement 
on liquid species diffusion. 

Alternatively, numerous theoretical and exper- 
imental investigations have been performed to deter- 
mine volumetric convection heat and/or mass transfer 
coefficients in dispersed flows, as well as in fluidized 

(4 (b) 

(cl Cd) 

(e) (0 

Fig. 2. Various mushy regions : (a) dispersed flow with sus- 
pended or impinging dendritic equiaxed crystals; (b) col- 
umnar dendrite tip region (growth front region); (c) and 
(d) interdendritic liquid region ; stationary packed equiaxed 
crystals and columnar dendritic structures ; (e) and (f) eutec- 
tic solid structure : equiaxed eutectic crystals and columnar 

eutectic structures. 

and packed beds. The transfer coefficients can be con- 
verted to a species diffusion length [18], and, using 
results obtained by Rowe and Claxton [19], Ni and 
Beckermann [6] obtained the following expressions 
for the equiaxed solidification of an Al-Cu alloy : 

‘3 
1; 

1 
-gJ 4 = 

1 + (1 -sl”) 2 (27) 

3% 
Sc,‘3Re” 

where 

2Re0.28 +4.65 
a= 

3 (Re0.28 f4.65) 

and 

Without convection, the species diffusion length 
reduces to (1 -gf!‘)d,/2, where d, is the characteristic 
diameter of the suspended crystals or fragments. 

Although the above model covers the range of solid 
fractions common to equiaxed crystals (0 6 gS < 1) 
and accounts for the effect of convection, it does not 
account for the effects of phase change and interface 
growth. Until additional research is performed to 
determine the effects of crystal growth rate, as well as 
those of convective flow and solid movement during 
dispersed equiaxed solidification, equations (26) and 
(27) provide reasonable first estimates of the species 
diffusion length. For suspended equiaxed crystals 
[Fig. 2(a) and (e)] experiencing a large growth rate, 
equation (26) is preferred, while for small growth rates 
equation (27) should be utilized. 
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For stationary columnar dendrites or equiaxed 
crystals [Fig. 2(c), (d) and (f)], the interdendritic 
liquid is often solutally well mixed [17, 201, and the 
species diffusion length is negligibly small (1; w 0). In 
such cases it is not necessary to account for solutal 
undercooling. However, for a dendrite tip region, [Fig. 
2(b)] or a eutectic front, solutal undercooling should 
be considered, and for high growth rates 1’; may be 
equated to Q/W,, with an appropriate kinetics model 
used to evaluate We. For low growth rates, equation 
(27) may be used bly replacing ds with the primary arm 
spacing 1,. 

During eutectic solidification [Fig. 2(e) and (f)], 
phase change take:s place isothermally at the eutectic 
temperature and interfacial species concentrations are 
known. Although there is a difference between the 
interfacial and volume-averaged species con- 
centrations of the liquid phase, phase change does not 
obey equilibrium phase relations, but is controlled 
by energy conservation. Therefore, in the continuum 
model, the value of the difference only influences the 
distribution of the volume averaged species con- 
centrations of the liquid and solid phases (see equation 
(45) of ref. [l]). 

2.3. Topological considerations 
2.3.1. Characte.ristic length of so/id structures. For 

equiaxed crystals, the diameter of an equivalent 
sphere dz [Fig. 3(a)] can be introduced to represent 
the characteristic length d,, where 

d” = 6g, I”. 
s ( 1 .rlv (29) 

The number of crystals per unit volume n” is the grain 
density, which depends on heterogeneous nucleation 
and fragment generation. Due to the transport of solid 
crystals, n” varies across the casting domain, con- 
tributing to non-homogeneities in the final casting. 
Details concerning nucleation and the effects of solid 
movement on the: distribution of n” are presented in 
Section 2.4. 

; 
_- 

Equivalent Sphere: 

(a) 

Contact of 
Dcndritcs 

Equivalent Cylinti 

(b) 
Fig. 3. Schematic illustration of equivalent spherical diam- 
eter d: for equiaxed crystals and cylindrical diameter dS for 

a square arrangement of columnar dendrites. 

Similarly, columnar dendrites may be treated as 
equivalent cylinders [Fig. 3(b)], and the equivalent 
dendrite diameter (or primary dendritic arm) dz can 
be expressed as 

(30) 

where nA is the number of cylinder-like crystals per 
unit area. Since the columnar dendritic crystals are 
stationary, nA is determined by heterogeneous 
nucleation during the early stages of solidification and 
remains constant. An instantaneous nucleation model 
developed by Stefanescu et al. [21] used the expression 
nA = (n”/0.87) ‘I3 to relate the two grain densities. 
Through its influence on the initial heterogeneous 
nucleation, the cooling rate of a casting system deter- 
mines the final size of the columnar structures. By 
assuming that the primary dendrite arm spacing is 
equal to the equivalent dendrite diameter (d, = 4) 
after primary dendrites contact @, = gsO,), the pri- 
mary arm spacing 1, can be related to nA and g%,,, by 
the following expression : 

“’ = l.l28@,,,,)“z (31) 

The solid contact fraction gron is defined as the solid 
volume fraction at which the primary or secondary 
dendrite arms interact. However, if a square arrange- 
ment of columnar dendrites (Fig. 3(b)) is assumed, 
1: = n(d:)2/4 = 0.7854(dz)’ atg, = gs,, and 

I,= gF ( 1 
I/Z 

,,z 0.87 “’ = @SCO”) .” . ( > (32) 

Alternatively, if the dendrite trunk arrangement is 
assumed to be close-packed hexagonal [22], 
d: = 0.74316 (dz)* at gs = gscon and 

1, = (,.7432~)‘:‘(~)‘;’ 

Equations (31)-(33) differ in their numerical 
coefficients (1.128, 1.0, and 0.973 for the foregoing 
dendrite arrangements, respectively), but clearly indi- 
cate that II is proportional to (l/n”)“‘, which has 
been recognized in metallurgical studies of columnar 
solidification. Equations (31)-(33) show that the pri- 
mary dendrite arm spacing is determined mainly by 
the system cooling rate through nA and the interface 
morphology throughg,,,. Once the solid contact frac- 
tion is obtained, the primary dendrite arm spacing 1, 
can be estimated by using equation (31), (32) or (33). 
Conversely, since the primary dendrite arm spacing II 
can be calculated from knowledge of the growth rate 
of the columnar dendrites and the temperature and 
concentration gradients at the columnar front [22], 
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the contact fraction g=,,” could be computed from one 
of the foregoing 2,-g_, relations. 

2.3.2. Interfacial area concentration. The interfacial 
area concentration S, is used in a macroscopic sol- 
idification model to account for the effects of interface 
geometry and to provide a microstructural basis for 
recrystallization. It may be expressed as a function of 
9. 

S, = ad 
( 

1 ---ax (s.dkd ’ 
1 -9m. > 

(34) 

where the constant a depends on the number of crys- 
tals within a control volume and the exponents b and 
c depend on the shape of the crystals. When gs = 0 or 
1, S, = 0. With b = c = 1 and g_,, = 0, equation (34) 
reduces to the relation proposed by Speich and Fisher 
[23]. However, based on the restriction that dS,/dg, 
must be infinite at gs = 0 and 1, the exponents in 
equation (34) should be greater than zero but less 
than one. According to Vandermeer et al. [24], the 
exponent c is equal to 1 -b/2, and when this relation 
is used with gmon = 0, equation (34) is equivalent to 
the expression developed by Vandermeer et al. [24]. 

The solid contact fraction gcon is introduced to 
account for the effects of crystal interaction. For equi- 
axed crystals, it is equal to the solid packing fraction 
gsp, which is in the range from 0.6 to 0.75 [25]. For 
columnar crystals, the solid contact fraction is the 
solid fraction at which the secondary dendrite arms 
of adjacent crystals contact one another, and its value 
depends on the shape of the columnar crystals. If 
columnar dendrites are treated as random-packed 
rods, values are in the range from 0.065 to 0.907 [25]. 
However, additional research is needed to investigate 
the solid packing fraction for equiaxed crystals and 
the solid contact fraction for columnar dendrites. If 
impingement (or contact) effects are not considered, 
9 lEOn can be taken as zero. At the other extreme, for 
‘perfect’ impingement of equiaxed crystals or contact 
of columnar dendrites occurring at the end of sol- 
idification, gsEon = 1. Such conditions never occur in 
practice. 

The interfacial area concentration can also be 
expressed in terms of a characteristic length of the 
solid structures. Without considering impingement 
(or contact) effects, for equivalent spherical crystals, 
S, can be expressed as [26,27] 

while for the columnar dendrites, it can be expressed 
as 

49s S” = -y. (36) 

Substitution of equation (29) into equation (35) for 
equiaxed crystals gives 

S, = (361t n”) “3 g:“. (37) 

Although this equation does not account for impinge- 
ment, it provides a limiting case of equation (34) and 
may therefore be used to determine the coefficient a 
and exponent b. It follows that a = (3671 n”)li3 and 
b = 2/3. Hence, with c = 1 -b/2 = 2/3, the interfacial 
area concentration may be expressed as 

S, = (36an’) ‘/3 gfs2/j 1 - max (g5, gsCOd *I3 
1 -gscon 

. (38) 

With gseon = 0 this expression is equivalent to that 
proposed by Cahn [28]. A similar model with 
c = (1 -gsp)/gsp instead of c = 2/3 was also developed 
by Ni et al. [12]. This model is an extension of that 
originally developed by Speich and Fisher [23], and 
the advantages of such extensions have recently been 
reviewed by Bradley [29]. 

A similar approach can be used for columnar den- 
drites. By substituting equation (30) into equation 
(36) and comparing with equation (34), the interfacial 
area concentration for columnar dendrites may be 
expressed as 

( 1 --ax (sg9s,,,> 3’4 S” = (4x n”) I’* gi’” 
1 -am” > 

(39) 

where the exponent c has been taken as 1 -b/2 = 314. 
Alternatively, the interfacial area concentration can 
be expressed in terms of the primary dendrite arm 
spacing 2,. For example, by using equation (3 I), equa- 
tion (39) reduces to 

S” = ;&g;‘* ( 1 --max h71d7scon) 
> 
3’4 

1-f7sc,, . 
(40) 

I 

By using equation (32), equation (39) reduces to a 
similar expression, except that the numerical factor 4 
is replaced by 2,/x x 3.545, which is identical to that 
developed by Wang and Beckermann [ 151. If equation 
(33) is used, the numerical factor is 3.449, rather than 
4. 

The foregoing topological models of dendritic 
characteristic lengths and interfacial area con- 
centrations for equiaxed and columnar structures are 
illustrated in Fig. 4. Figure 4(a) shows results for 
the characteristic diameters of equivalent spherical 
equiaxed crystals and cylindrical columnar dendrites, 
normalized by final grain size and primary dendrite 
arm spacing, respectively. Figure 4(b) compares pre- 
dictions of S, based on equation (38), with different 
values of gscon, and other models developed by Speich 
and Fisher [23] and Cahn [28]. Similar plots for the 
normalized effective solid-liquid interface of eutectic 
grains are provided by Gandin et al. [30] for different 
impingement models. Although equations (38) and 
(39) provide topological formulations that enable the 
incorporation of microstructural features in a macro- 
scopic model of transport phenomena during sol- 
idification, areas in need of additional research relate 
to dendrite contact and coarsening phenomena. 
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Fig. 4. Topological relations : (a) dimensionless equivalent spherical (for equiaxed crystals) and cylindrical 
(for columnar dendrites) diameters ; (b) dimensionless area concentrations for equiaxed crystals. 

2.4. Nucleation model and prediction of final solid 
structure 

For stationary columnar dendrites, nA is constant 
after heterogeneous nucleation is complete, while for 
moving equiaxed ~crystals, n” varies until solidification 
is complete. Therefore, the grain density n” depends 
not only on the nucleation rate during the initial stages 
of solidification and the fragment generation rate, but 
also on the advection of crystals. This feature can be 
characterized by a transport equation of the form [ 121 

(41) 

where n refers to n” or n*, for which V, = 0. To cal- 
culate characterktic diameters and interfacial area 
concentrations and to predict the final sizes of equi- 
axed grains and/or columnar dendrites, an appro- 
priate heterogene:ous nucleation law and a model of 
fragment generation are needed. At this time, it is not 
clear how to model fragment generation and related 
research is clearly needed. Moreover, although 
detailed discussions of heterogeneous nucleation are 
provided by Rappaz [4] and Stefanescu et al. [21], at 
this time it is also not clear how to obtain a het- 
erogeneous nucleation model which accounts for con- 
vection. Nevertheless, existing nucleation models pro- 
vide a stepping stone for future investigations. 

Because of its dependence on factors such as mold 
surface impurities and inclusions in the melt, as well as 
on melt thermophysical properties and undercooling, 
heterogeneous nucleation is a stochastic phenomenon. 
Recently, a nucleation model was developed to esti- 
mate the number of nuclei formed continuously and 
stochastically during the initial stages of solidification 
[4]. In this model, it is assumed that nucleation begins 
when the nucleation temperature, T,,, is reached and 
occurs continuously u&i1 the onset of recalescence, at 
which point nucleation terminates. By introducing a 
probability function, which depends on nucleation 
undercooling, the number of nuclei formed per unit 
volume is expressed as 

An” = n,_ 
s 

**‘AAT) d(AT) (42) 
A*! 

where AT = Tld- T is the undercooling of the liquid 
melt, AT, is the undercooling of the previous time step, 
and AT2 is the maximum undercooling associated with 
the end of nucleation. The probability density func- 
tion is given by 

SW? = 

where AT, is the standard deviation of the under- 
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Q8 = acon the final size of the solid structures can be 
estimated as 

& = 49,, “2 ( > 7rn: 
(45) 

or the primary arm spacing I, can be calculated from 
equation (31), (32:1 or (33). 

3;. CONCLUSIONS 

When used with conservation equations provided 
in the companion paper [l], the models of this study 
permit the inclusion of effects such as solid particle 
motion and solutal undercooling in predicting the sol- 
idification of binary mixtures. Solid motion can be 
determined from equation (21), with specific relations 
between solid and liquid velocities in the vertical and 
horizontal directions provided by equations (14) and 
(20), respectively. Solutal undercooling may be deter- 
mined from equation (23) or (24), which, in turn, 
depend on knowledge of the phase change rate, liquid 
species diffusion length, liquid diffusivity, solid 
density, and interfacial area concentration. Two 
expressions, equations (26) and (27), are provided for 
determining the liquid species diffusion length, the 
first for rapid interface growth and weak convection 
and the second for slow interface growth and strong 
convection. In an interdendritic region, the liquid can 
be assumed to be solutally well mixed and the liquid 
species diffusion length is equated to zero. 

Equivalent spherical and cylindrical diameters for 
equiaxed crystals and dendrites are introduced 
through equations (29) and (30), respectively, in terms 
of the solid volume fraction and grain density. By 
assuming certain dendritic trunk arrangements, the 
primary arm spacing can be estimated by equation 
(31), (32) or (33). Topological formulations for inter- 
facial area concentrations are given by equations (38) 
and (39) for equiaxed solidification and columnar 
dendritic solidification, respectively. The topological 
formulations are needed to determine solutal under- 
cooling and to predict the final size of the casting. 

The foregoing characteristic lengths of the solid 
structures and the interfacial area concentration 
strongly depend on the number of crystals or 
dendrites, which .are determined by the initial rate of 
nucleation and fragment generation, as well as by 
solid transport. A. stochastic nucleation model [4] can 
be used to evaluate the initial nucleation rate which 
appears as a source term in a transport equation, 
equation (41), which accounts for the effects of solid 
movement on distribution of grain density. 

A flow chart of the proposed model is provided in 
Fig. 5 to show the coupling between the macroscopic 
calculation of mass, momentum, heat and species con- 
centration [l] and the inclusion of microscopic fea- 
tures such as characteristic lengths of the solid struc- 
tures, interfacial geometry, interface growth, and 
nucleation and/or fragment generation. To suc- 

cessfully implement the model, criteria for delineating 
submodel domains, as well as characterization of 
numerous micro- and macro-properties, are needed. 
Development of such a knowledge base will require 
extensive experimental and numerical work. 
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